If something is growing at a rate of 5% per year, how many years will it take
until it doubles? Common wisdom suggests it’s approximately 70/5=14, but
why? Or you can even divide 72 by the rate if it makes it easier to divide
(e.g., for 6% or 8% or 9%) to get the number of periods it would
take for it to double. But … where are these magic numbers 70 and 72
coming from and how does it work that you can just divide them by the rate to
get the doubling time?
What we’re actually trying to calculate is n where 1.05n=2. In many
cases, n is the number of years (since growth rates, e.g., for savings
accounts or CDs are quoted annually), but more generally, it’s the number of
periods where the growth is known to be a particular (constant) rate, and is
assumed to be compounding.
If we have something growing at a rate r where 5% would be expressed as
0.05, we have:
(1+r)nln((1+r)n)nln(1+r)n=2=ln2=ln2=ln(1+r)ln2
In the case of r=0.05, we have n=ln1.05ln2≈14.21
so our approximation above (70/5=14) is not too bad! Still, where does the
70 come from and why does it work?
First, let’s note that f(x)=ln(1+x) can be approximated by f(x)=x
in the small region where we typically deal with percents, which are typically
up to 10%, and still reasonably approximates for a fair bit beyond that.
Here’s a comparison between the two functions; you can see they’re quite close
for smaller values, and diverges slightly beyond that1:
x
y = ln(1 + x)
y = x
0
0
0
0.01
0.01
0.01
0.02
0.02
0.02
0.03
0.03
0.03
0.04
0.039
0.04
0.05
0.049
0.05
0.06
0.058
0.06
0.07
0.068
0.07
0.08
0.077
0.08
0.09
0.086
0.09
0.1
0.095
0.1
0.11
0.104
0.11
0.12
0.113
0.12
0.13
0.122
0.13
0.14
0.131
0.14
0.15
0.14
0.15
0.16
0.148
0.16
0.17
0.157
0.17
0.18
0.166
0.18
0.19
0.174
0.19
0.2
0.182
0.2
0.21
0.191
0.21
0.22
0.199
0.22
0.23
0.207
0.23
0.24
0.215
0.24
0.25
0.223
0.25
0.26
0.231
0.26
0.27
0.239
0.27
0.28
0.247
0.28
0.29
0.255
0.29
0.3
0.262
0.3
0.31
0.27
0.31
0.32
0.278
0.32
0.33
0.285
0.33
0.34
0.293
0.34
0.35
0.3
0.35
0.36
0.307
0.36
0.37
0.315
0.37
0.38
0.322
0.38
0.39
0.329
0.39
0.4
0.336
0.4
0.41
0.344
0.41
0.42
0.351
0.42
0.43
0.358
0.43
0.44
0.365
0.44
0.45
0.372
0.45
0.46
0.378
0.46
0.47
0.385
0.47
0.48
0.392
0.48
0.49
0.399
0.49
0.5
0.405
0.5
y = x
Thus, we can simplify our approximation even further:
n=ln(1+r)ln2≈rln2≈r0.6931…≈100r69.31…≈100r70
And this is how you can divide 70 by the percentage rate (e.g., 5 of
5%) instead of thinking about the decimal rate as 0.05 or the rate
multiplier 1.05!
So how accurate is using 100r70 or even 100r72 in
practice?
x
y = (ln 2) / ln(1 + x/100)
y = 69/x
y = 70/x
y = 72/x
1
69.661
69.3
70
72
1.1
63.359
63
63.636
65.455
1.2
58.108
57.75
58.333
60
1.3
53.665
53.308
53.846
55.385
1.4
49.856
49.5
50
51.429
1.5
46.556
46.2
46.667
48
1.6
43.667
43.312
43.75
45
1.7
41.119
40.765
41.176
42.353
1.8
38.854
38.5
38.889
40
1.9
36.827
36.474
36.842
37.895
2
35.003
34.65
35
36
2.1
33.352
33
33.333
34.286
2.2
31.852
31.5
31.818
32.727
2.3
30.482
30.13
30.435
31.304
2.4
29.226
28.875
29.167
30
2.5
28.071
27.72
28
28.8
2.6
27.005
26.654
26.923
27.692
2.7
26.017
25.667
25.926
26.667
2.8
25.1
24.75
25
25.714
2.9
24.247
23.897
24.138
24.828
3
23.45
23.1
23.333
24
3.1
22.704
22.355
22.581
23.226
3.2
22.006
21.656
21.875
22.5
3.3
21.349
21
21.212
21.818
3.4
20.731
20.382
20.588
21.176
3.5
20.149
19.8
20
20.571
3.6
19.599
19.25
19.444
20
3.7
19.078
18.73
18.919
19.459
3.8
18.585
18.237
18.421
18.947
3.9
18.117
17.769
17.949
18.462
4
17.673
17.325
17.5
18
4.1
17.25
16.902
17.073
17.561
4.2
16.848
16.5
16.667
17.143
4.3
16.464
16.116
16.279
16.744
4.4
16.097
15.75
15.909
16.364
4.5
15.747
15.4
15.556
16
4.6
15.412
15.065
15.217
15.652
4.7
15.092
14.745
14.894
15.319
4.8
14.784
14.438
14.583
15
4.9
14.49
14.143
14.286
14.694
5
14.207
13.86
14
14.4
5.1
13.935
13.588
13.725
14.118
5.2
13.673
13.327
13.462
13.846
5.3
13.422
13.075
13.208
13.585
5.4
13.18
12.833
12.963
13.333
5.5
12.946
12.6
12.727
13.091
5.6
12.721
12.375
12.5
12.857
5.7
12.504
12.158
12.281
12.632
5.8
12.294
11.948
12.069
12.414
5.9
12.092
11.746
11.864
12.203
6
11.896
11.55
11.667
12
6.1
11.706
11.361
11.475
11.803
6.2
11.523
11.177
11.29
11.613
6.3
11.345
11
11.111
11.429
6.4
11.173
10.828
10.938
11.25
6.5
11.007
10.662
10.769
11.077
6.6
10.845
10.5
10.606
10.909
6.7
10.688
10.343
10.448
10.746
6.8
10.536
10.191
10.294
10.588
6.9
10.388
10.043
10.145
10.435
7
10.245
9.9
10
10.286
7.1
10.105
9.761
9.859
10.141
7.2
9.97
9.625
9.722
10
7.3
9.838
9.493
9.589
9.863
7.4
9.709
9.365
9.459
9.73
7.5
9.584
9.24
9.333
9.6
7.6
9.463
9.118
9.211
9.474
7.7
9.344
9
9.091
9.351
7.8
9.229
8.885
8.974
9.231
7.9
9.116
8.772
8.861
9.114
8
9.006
8.663
8.75
9
8.1
8.899
8.556
8.642
8.889
8.2
8.795
8.451
8.537
8.78
8.3
8.693
8.349
8.434
8.675
8.4
8.594
8.25
8.333
8.571
8.5
8.497
8.153
8.235
8.471
8.6
8.402
8.058
8.14
8.372
8.7
8.309
7.966
8.046
8.276
8.8
8.218
7.875
7.955
8.182
8.9
8.13
7.787
7.865
8.09
9
8.043
7.7
7.778
8
9.1
7.959
7.615
7.692
7.912
9.2
7.876
7.533
7.609
7.826
9.3
7.795
7.452
7.527
7.742
9.4
7.715
7.372
7.447
7.66
9.5
7.638
7.295
7.368
7.579
9.6
7.562
7.219
7.292
7.5
9.7
7.487
7.144
7.216
7.423
9.8
7.414
7.071
7.143
7.347
9.9
7.343
7
7.071
7.273
10
7.273
6.93
7
7.2
10.1
7.204
6.861
6.931
7.129
10.2
7.137
6.794
6.863
7.059
10.3
7.07
6.728
6.796
6.99
10.4
7.006
6.663
6.731
6.923
10.5
6.942
6.6
6.667
6.857
10.6
6.88
6.538
6.604
6.792
10.7
6.819
6.477
6.542
6.729
10.8
6.759
6.417
6.481
6.667
10.9
6.7
6.358
6.422
6.606
11
6.642
6.3
6.364
6.545
11.1
6.585
6.243
6.306
6.486
11.2
6.529
6.188
6.25
6.429
11.3
6.474
6.133
6.195
6.372
11.4
6.421
6.079
6.14
6.316
11.5
6.368
6.026
6.087
6.261
11.6
6.316
5.974
6.034
6.207
11.7
6.265
5.923
5.983
6.154
11.8
6.214
5.873
5.932
6.102
11.9
6.165
5.824
5.882
6.05
12
6.116
5.775
5.833
6
12.1
6.068
5.727
5.785
5.95
12.2
6.021
5.68
5.738
5.902
12.3
5.975
5.634
5.691
5.854
12.4
5.93
5.589
5.645
5.806
12.5
5.885
5.544
5.6
5.76
12.6
5.841
5.5
5.556
5.714
12.7
5.798
5.457
5.512
5.669
12.8
5.755
5.414
5.469
5.625
12.9
5.713
5.372
5.426
5.581
13
5.671
5.331
5.385
5.538
13.1
5.631
5.29
5.344
5.496
13.2
5.591
5.25
5.303
5.455
13.3
5.551
5.211
5.263
5.414
13.4
5.512
5.172
5.224
5.373
13.5
5.474
5.133
5.185
5.333
13.6
5.436
5.096
5.147
5.294
13.7
5.399
5.058
5.109
5.255
13.8
5.362
5.022
5.072
5.217
13.9
5.326
4.986
5.036
5.18
14
5.29
4.95
5
5.143
14.1
5.255
4.915
4.965
5.106
14.2
5.22
4.88
4.93
5.07
14.3
5.186
4.846
4.895
5.035
14.4
5.152
4.813
4.861
5
14.5
5.119
4.779
4.828
4.966
14.6
5.086
4.747
4.795
4.932
14.7
5.054
4.714
4.762
4.898
14.8
5.022
4.682
4.73
4.865
14.9
4.991
4.651
4.698
4.832
15
4.959
4.62
4.667
4.8
15.1
4.929
4.589
4.636
4.768
15.2
4.899
4.559
4.605
4.737
15.3
4.869
4.529
4.575
4.706
15.4
4.839
4.5
4.545
4.675
15.5
4.81
4.471
4.516
4.645
15.6
4.781
4.442
4.487
4.615
15.7
4.753
4.414
4.459
4.586
15.8
4.725
4.386
4.43
4.557
15.9
4.697
4.358
4.403
4.528
16
4.67
4.331
4.375
4.5
16.1
4.643
4.304
4.348
4.472
16.2
4.617
4.278
4.321
4.444
16.3
4.59
4.252
4.294
4.417
16.4
4.564
4.226
4.268
4.39
16.5
4.539
4.2
4.242
4.364
16.6
4.513
4.175
4.217
4.337
16.7
4.488
4.15
4.192
4.311
16.8
4.463
4.125
4.167
4.286
16.9
4.439
4.101
4.142
4.26
17
4.415
4.076
4.118
4.235
17.1
4.391
4.053
4.094
4.211
17.2
4.367
4.029
4.07
4.186
17.3
4.344
4.006
4.046
4.162
17.4
4.321
3.983
4.023
4.138
17.5
4.298
3.96
4
4.114
17.6
4.276
3.938
3.977
4.091
17.7
4.253
3.915
3.955
4.068
17.8
4.231
3.893
3.933
4.045
17.9
4.209
3.872
3.911
4.022
18
4.188
3.85
3.889
4
18.1
4.167
3.829
3.867
3.978
18.2
4.145
3.808
3.846
3.956
18.3
4.125
3.787
3.825
3.934
18.4
4.104
3.766
3.804
3.913
18.5
4.084
3.746
3.784
3.892
18.6
4.063
3.726
3.763
3.871
18.7
4.043
3.706
3.743
3.85
18.8
4.024
3.686
3.723
3.83
18.9
4.004
3.667
3.704
3.81
19
3.985
3.647
3.684
3.789
19.1
3.966
3.628
3.665
3.77
19.2
3.947
3.609
3.646
3.75
19.3
3.928
3.591
3.627
3.731
19.4
3.909
3.572
3.608
3.711
19.5
3.891
3.554
3.59
3.692
19.6
3.873
3.536
3.571
3.673
19.7
3.855
3.518
3.553
3.655
19.8
3.837
3.5
3.535
3.636
19.9
3.819
3.482
3.518
3.618
20
3.802
3.465
3.5
3.6
20.1
3.784
3.448
3.483
3.582
20.2
3.767
3.431
3.465
3.564
20.3
3.75
3.414
3.448
3.547
20.4
3.734
3.397
3.431
3.529
20.5
3.717
3.38
3.415
3.512
20.6
3.701
3.364
3.398
3.495
20.7
3.684
3.348
3.382
3.478
20.8
3.668
3.332
3.365
3.462
20.9
3.652
3.316
3.349
3.445
y = 72/x
As you can see, the various estimates are pretty close to the exact value.
Below are the comparisons between the real, correct value and the various
approximations, highlighting the one that is closest (in terms of absolute
difference) from the correct value. As you can see, each of the approximations
is best in a particular range of percentage values.
The graphs on this page are implemented using Google Charts; I provided the data computed via JavaScript on the page before calling the API. To get the lines to curve, I used the curveType: 'function' option. ↩︎