Back to VTRMC list
Problem source: HTML (archive) and PDF (archive)

Problem 1

Let \ast denote a binary operation on a set SS with the property that

(wx)(yz)=wz for all w,x,y,zS (w \ast x) \ast (y \ast z) = w \ast z \text{ for all } w, x, y, z \in S

Show:

  1. If ab=ca \ast b = c, then cc=cc \ast c = c.
  2. If ab=ca \ast b = c, then ax=cxa \ast x = c \ast x for all xSx \in S.

Problem 2

The sum of the first nn terms of the sequence

1,(1+2),(1+2+22),,(1+2++2k1), 1, (1 + 2), (1 + 2 + 2^2), …, (1 + 2 + … + 2^{k - 1}), …

is of the form 2n+R+Sn2+Tn+U2^{n + R} + Sn^2 + Tn + U for all n>0n > 0. Find RR, SS, TT and UU.

Problem 3

Let an=135  (2n1)246  2n\displaystyle{ a_n = \frac{1 \cdot 3 \cdot 5 \cdot \ … \ \cdot (2n - 1)} {2 \cdot 4 \cdot 6 \cdot \ … \ \cdot 2n} }.

  1. Prove that limnan\displaystyle{\lim_{n \to \infty} a_n} exists.
  2. Show that an=(1(12)2)(1(14)2)(1(12n)2)(2n+1)an\displaystyle{ a_n = \frac{\left( 1 - \left( \frac{1}{2} \right)^2 \right) \left( 1 - \left( \frac{1}{4} \right)^2 \right) \cdots \left( 1 - \left( \frac{1}{2n} \right)^2 \right)} {(2n + 1)a_n} }.
  3. Find limnan\displaystyle{\lim_{n \to \infty} a_n} and justify your answer.

Problem 4

Let P(x)P(x) be any polynomial of degree at most 33. It can be shown that there are numbers x1x_1 and x2x_2 such that 11P(x)dx=P(x1)+P(x2)\displaystyle{\int_{-1}^{1} P(x) dx = P(x_1) + P(x_2)}, where x1x_1 and x2x_2 are independent of the polynomial PP.

  1. Show that x1=x2x_1 = - x_2.
  2. Find x1x_1 and x2x_2.

Problem 5

For x>0x > 0, show that ex<(1+x)1+xe^x < (1 + x)^{1 + x}.

Problem 6

Given the linear fractional transformation of xx into f1(x)=2x1x+1\displaystyle{ f_1(x) = \frac{2x - 1}{x + 1} }, define fn+1(x)=f1(fn(x))f_{n + 1}(x) = f_1(f_n(x)) for n=1,2,3,n = 1, 2, 3, …. It can be shown that f35=f5f_{35} = f_5. Determine AA, BB, CC, and DD so that f28(x)=Ax+BCx+D\displaystyle{ f_{28}(x) = \frac{Ax + B}{Cx + D} }.

Problem 7

Let SS be the set of all ordered pairs of integers (m,n)(m, n) satisfying m>0m > 0 and n<0n < 0. Let \langle be a partial ordering on SS defined by the statement: (m,n)  (m,n)(m, n) \ \langle\ (m', n') if and only if mmm \le m' and nnn \le n'. An example is (5,10)  (8,2)(5, - 10) \ \langle\ (8, - 2). Now let OO be a completely ordered subset of SS, i.e., if (a,b)O(a, b) \in O and (c,d)O(c, d ) \in O, then (a,b)  (c,d)(a, b) \ \langle\ (c, d ) or (c,d)  (a,b)(c, d ) \ \langle\ (a, b). Also let CC denote the collection of all such completely ordered sets.

  1. Determine whether an arbitrary OCO \in C is finite.
  2. Determine whether the cardinality O\Vert O \Vert of OO is bounded for OCO \in C.
  3. Determine whether O\Vert O \Vert can be countably infinite for any OCO \in C.

Problem 8

Let z=x+iyz = x + iy be a complex number with xx and yy rational and with z=1|z| = 1.

  1. Find two such complex numbers.

  2. Show that z2n1=2sinnθ\left| z^{2n} - 1 \right| = 2 \left| \sin n \theta \right|, where z=eiθz = e^{i \theta}.

  3. Show that z2n1\left| z^{2n} - 1 \right| is rational for every nn.